Fallou, L., Marti, M., Dallo, I. & Corradini, M. How to fight earthquake misinformation: A communication guide. Seismol. Res. Lett. 93, 2418–2422. https://doi.org/10.1785/0220220086 (2022).
Mero, A. In Quake-Rattled Albania, Journalists Detained on Fake News Charges After Falsely Warning of AfterShocks. https://www.voanews.com/a/europe_quake-rattled-albania-journalists-detained-fake-news-charges-after-falsely-warning/6176290.html. Accessed 23 Sept 2019.
Kwanda, F. A. & Lin, T. T. Fake news practices in Indonesian newsrooms during and after the Palu earthquake: A hierarchy-of-influences approach. Inf. Commun. Soc. 23, 849–866 (2020).
Flores-Saviaga, C. & Savage, S. Fighting disaster misinformation in Latin America: The# 19S Mexican earthquake case study. Pers. Ubiquit. Comput. 25, 353–373 (2021).
Gori, P. L. The social dynamics of a false earthquake prediction and the response by the public sector. Bull. Seismol. Soc. Am. 83, 963–980 (1993).
Alexander, D. E. The L’Aquila earthquake of 6 April 2009 and Italian Government policy on disaster response. J. Nat. Resour. Policy Res. 2, 325–342 (2010).
Dallo, I., Corradini, M., Fallou, L. & Marti, M. How to Fight Misinformation About Earthquakes. A Communication Guide (Swiss Seismological Service at ETH Zurich, 2022). https://doi.org/10.3929/ethz-b-000530319.
Main, I. Is the reliable prediction of individual earthquakes a realistic scientific goal. Nature 20, 397 (1999).
Dallo, I. A. Understanding the Communication of Event-Related Earthquake Information in a Multi-hazard Context to Improve Society’s Resilience (ETH Zurich, 2022).
Cochran, E. S. et al. Research to improve ShakeAlert earthquake early warning products and their utility. Report No. 2331–1258, (US Geological Survey, 2018).
Fallou, L., Corradini, M., Bossu, R. & Cheny, J.-M. Preventing and debunking earthquake misinformation: Insights into EMSC’s practices. Front. Commun. 7, 287 (2022).
Huang, Y. L., Starbird, K., Orand, M., Stanek, S. A. & Pedersen, H. T. Connected through crisis: Emotional proximity and the spread of misinformation online. In Proceedings of the 18th ACM Conference on Computer Supported Cooperative Work and Social Computing, 969–980 (2015).
Kolokythas, A. What do the aftermath of the 2010 Haiti earthquake, Hurricane Sandy, the Boston Marathon bombing, the 2013 Ebola outbreak, and the COVID-19 pandemic have in common?. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 132, 371–372 (2021).
Scheufele, D. A., Hoffman, A. J., Neeley, L. & Reid, C. M. From the Cover: Arthur M. Sackler Colloquium on advancing the science and practice of science communication: Misinformation about science in the public sphere: Misinformation about science in the public sphere. Proc. Natl. Acad. Sci. USA 118, 25 (2021).
van Prooijen, J. W. & Douglas, K. M. Belief in conspiracy theories: Basic principles of an emerging research domain. Eur. J. Soc. Psychol. 48, 897–908 (2018).
Bossu, R., Corradini, M., Cheny, J. M. & Cheny, J.-M. Communicating rapid public earthquake information through a Twitter bot: The 10-year long@ LastQuake experience. Front. Commun. 8, 39 (2022).
Murayama, T., Wakamiya, S., Aramaki, E. & Kobayashi, R. Modeling the spread of fake news on Twitter. PLoS One 16, e0250419 (2021).
Zhao, Z. et al. Fake news propagates differently from real news even at early stages of spreading. EPJ Data Sci. 9, 7 (2020).
Erokhin, D., Yosipof, A. & Komendantova, N. COVID-19 conspiracy theories discussion on Twitter. Soc. Med. Soc. 8, 20563051221126052. https://doi.org/10.1177/20563051221126051 (2022).
Elroy, O. & Yosipof, A. Analysis of COVID-19 5G conspiracy theory tweets using SentenceBERT embedding. In Artificial Neural Networks and Machine Learning—ICANN 2022: 31st International Conference on Artificial Neural Networks, Bristol, UK, September 6–9, 2022, Proceedings, Part II, 186–196 (2022).
Komendantova, N. et al. A value-driven approach to addressing misinformation in social media. Human. Soc. Sci. Commun. 8, 1–12 (2021).
Peng, Z. Earthquakes and coronavirus: How to survive an infodemic. Seismol. Res. Lett. 91, 2441–2443 (2020).
Zhou, C., Xiu, H., Wang, Y. & Yu, X. Characterizing the dissemination of misinformation on social media in health emergencies: An empirical study based on COVID-19. Inf. Process. Manage. 58, 102554 (2021).
Peary, B. D., Shaw, R. & Takeuchi, Y. Utilization of social media in the east Japan earthquake and tsunami and its effectiveness. J. Nat. Dis. Sci. 34, 3–18 (2012).
Fallou, L. et al. Citizen seismology without seismologists? Lessons learned from Mayotte leading to improved collaboration. Front. Commun. 5, 49 (2020).
Jones, N. M., Thompson, R. R., Dunkel Schetter, C. & Silver, R. C. Distress and rumor exposure on social media during a campus lockdown. Proc. Natl. Acad. Sci. 114, 11663–11668 (2017).
Jahanbakhsh, F. et al. Exploring lightweight interventions at posting time to reduce the sharing of misinformation on social media. Proc. ACM Human Comput. Interact. 5, 1–42 (2021).
Ruan, T., Kong, Q., McBride, S. K., Sethjiwala, A. & Lv, Q. Cross-platform analysis of public responses to the 2019 Ridgecrest earthquake sequence on Twitter and Reddit. Sci. Rep. 12, 1634 (2022).
Pierpoint, G. Kerala floods: Fake news 'creating unnecessary panic'. https://unesdoc.unesco.org/ark:/48223/pf0000381958. Accessed 20 Aug 2018.
Fraser, T., Morikawa, L. & Aldrich, D. P. Rumor has it: The role of social ties and misinformation in evacuation to nearby shelters after disaster. Clim. Risk Manage. 33, 100320 (2021).
van der Linden, S. Misinformation: Susceptibility, spread, and interventions to immunize the public. Nat. Med. 28, 460–467 (2022).
Brumfiel, G. Their mom died of COVID. They say conspiracy theories are what really killed her. https://www.npr.org/sections/health-shots/2022/04/24/1089786147/covid-conspiracy-theories. Accessed 24 Apr 2022.
Abrams, Z. Controlling the spread of misinformation. https://www.apa.org/monitor/2021/03/controlling-misinformation. Accessed 1 Mar 2021.
Bode, L. & Vraga, E. K. See something, say something: Correction of global health misinformation on social media. Health Commun. 33, 1131–1140. https://doi.org/10.1080/10410236.2017.1331312 (2018).
Ozturk, P., Li, H. & Sakamoto, Y. Combating rumor spread on social media: The effectiveness of refutation and warning. In 2015 48th Hawaii International Conference on System Sciences, 2406–2414 (2015).
Acerbi, A., Altay, S. & Mercier, H. Research note: Fighting misinformation or fighting for information? (2022).
Scheufele, D. A. Communicating science in social settings. Proc. Natl. Acad. Sci. 110, 14040–14047 (2013).
Arora, S. Post-disaster communities on social media: Citizen participation in crisis communication after the Nepal earthquake, 2015. J. Appl. Commun. Res. 50, 1–18 (2022).
Xia, Y. et al. Disinformation, performed: Self-presentation of a Russian IRA account on Twitter. Inf. Commun. Soc. 22, 1646–1664 (2019).
Vosoughi, S., Roy, D. & Aral, S. The spread of true and false news online. Science 359, 1146–1151. https://doi.org/10.1126/science.aap9559 (2018).
Li, H.O.-Y., Pastukhova, E., Brandts-Longtin, O., Tan, M. G. & Kirchhof, M. G. YouTube as a source of misinformation on COVID-19 vaccination: A systematic analysis. BMJ Glob. Health 7, e008334 (2022).
Guess, A., Nagler, J. & Tucker, J. Less than you think: Prevalence and predictors of fake news dissemination on Facebook. Sci. Adv. 5, 4586 (2019).
Altay, S., Berriche, M. & Acerbi, A. Misinformation on misinformation: Conceptual and methodological challenges. Soc. Med. Soc. 9, 20563051221150412 (2023).
UNESCO. Addressing Conspiracy Theories: What Teachers Need to Know. https://unesdoc.unesco.org/ark:/48223/pf0000381958 (2022).
Fong, A., Roozenbeek, J., Goldwert, D., Rathje, S. & van der Linden, S. The language of conspiracy: A psychological analysis of speech used by conspiracy theorists and their followers on Twitter. Group Process Intergroup Relat. 24, 606–623 (2021).
Beskow, D. M. & Carley, K. M. Bot-hunter: A tiered approach to detecting and characterizing automated activity on twitter. In Conference paper. SBP-BRiMS: International conference on social computing, behavioral-cultural modeling and prediction and behavior representation in modeling and simulation 3, 3 (2018).
ODonovan, J., Kang, B., Meyer, G., Höllerer, T. & Adalii, S. Credibility in context: An analysis of feature distributions in twitter. In 2012 International Conference on Privacy, Security, Risk and Trust and 2012 International Confernece on Social Computing, 293–301 (2012).
Gupta, A., Kumaraguru, P., Castillo, C. & Meier, P. Tweetcred: Real-time credibility assessment of content on twitter. In International Conference on Social Informatics, 228–243 (2014).
Devlin, J., Chang, M.-W., Lee, K. & Toutanova, K. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (arXiv preprint) (2018).
Piskorski, J., Haneczok, J. & Jacquet, G. New benchmark corpus and models for fine-grained event classification: To BERT or not to BERT? In Proceedings of the 28th International Conference on Computational Linguistics, 6663–6678 (2020).
González-Carvajal, S. & Garrido-Merchán, E. C. Comparing BERT against traditional machine learning text classification. arXiv:2005.13012 (arXiv preprint) (2020).
Schütz, M., Schindler, A., Siegel, M. & Nazemi, K. Automatic fake news detection with pre-trained transformer models. In International Conference on Pattern Recognition, 627–641 (2021).
Batzdorfer, V., Steinmetz, H., Biella, M. & Alizadeh, M. Conspiracy theories on Twitter: Emerging motifs and temporal dynamics during the COVID-19 pandemic. Int. J. Data Sci. Anal. 13, 315–333 (2022).
Micallef, N., He, B., Kumar, S., Ahamad, M. & Memon, N. The role of the crowd in countering misinformation: A case study of the COVID-19 infodemic. In 2020 IEEE International Conference on Big Data (Big Data), 748–757 (2020).
Müller, M., Salathé, M. & Kummervold, P. E. Covid-twitter-bert: A natural language processing model to analyse covid-19 content on twitter. arXiv:2005.07503 (arXiv preprint) (2020).
Reimers, N. & Gurevych, I. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv:1908.10084 (arXiv preprint) (2019).
Adoma, A. F., Henry, N.-M. & Chen, W. Comparative analyses of bert, roberta, distilbert, and xlnet for text-based emotion recognition. In 2020 17th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP), 117–121 (2020).
Naseer, M., Asvial, M. & Sari, R. F. An empirical comparison of bert, roberta, and electra for fact verification. In 2021 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), 241–246 (2021).
Tarunesh, I., Aditya, S. & Choudhury, M. Trusting roberta over bert: Insights from checklisting the natural language inference task. arXiv:2107.07229 (arXiv preprint) (2021).
McHugh, M. L. Interrater reliability: The kappa statistic. Biochem. Med. (Zagreb) 22, 276–282 (2012).
Nguyen, D. Q., Vu, T. & Nguyen, A. T. BERTweet: A pre-trained language model for English Tweets. arXiv:2005.10200 (arXiv preprint) (2020).
Ye, L., Gong, W., Lay, T., Kanamori, H. & Chen, X. Shallow Megathrust rupture during the 10 February 2021 M w 7.7 Southeast Loyalty Islands Earthquake sequence. Seismic Rec. 1, 154–163 (2021).
Wang, Y., Heidarzadeh, M., Satake, K. & Hu, G. Characteristics of two tsunamis generated by successive Mw 7.4 and Mw 8.1 earthquakes in the Kermadec Islands on 4 March 2021. Nat. Hazards Earth Syst. Sci. 22, 1073–1082. https://doi.org/10.5194/nhess-22-1073-2022 (2022).
Kiser, E. & Kehoe, H. The hazard of coseismic gaps: The 2021 Fukushima earthquake. Geophys. J. Int. 227, 54–57 (2021).
Muhammed T, S. & Mathew, S. K. (2022). The disaster of misinformation: A review of research in social media. Int. J. Data Sci. Anal. 13, 271–285
Marti, M., Stauffacher, M. & Wiemer, S. Anecdotal evidence is an insufficient basis for designing earthquake preparedness campaigns, Vol. 91, 1929–1935 (Seismological Society of America, 2020).
0 Comments